Order Reduction of Parametrically Excited Nonlinear Systems: Techniques and Applications
نویسندگان
چکیده
The basic problem of order reduction of nonlinear systems with time periodic coefficients is considered in state space and in direct second order (structural) form. In state space order reduction methods, the equations of motion are expressed as a set of first order equations and transformed using the Lyapunov–Floquet (L–F) transformation such that the linear parts of new set of equations are time invariant. At this stage, four order reduction methodologies, namely linear, nonlinear projection via singular perturbation, post-processing approach and invariant manifold technique, are suggested. The invariant manifold technique yields a unique ‘reducibility condition’ that provides the conditions under which an accurate nonlinear order reduction is possible. Unlike perturbation or averaging type approaches, the parametric excitation term is not assumed to be small. An alternate approach of deriving reduced order models in direct second order form is also presented. Here the system is converted into an equivalent second order nonlinear system with time invariant linear system matrices and periodically modulated nonlinearities via the L–F and other canonical transformations. Then a master-slave separation of degrees of freedom is used and a nonlinear relation between the slave coordinates and the master coordinates is constructed. This method yields the same ‘reducibility conditions’ obtained by invariant manifold approach in state space. Some examples are given to show potential applications to real problems using above mentioned methodologies. Order reduction possibilities and results for various cases including ‘parametric’, ‘internal’, ‘true internal’ and ‘true combination resonances’ are discussed. A generalization of these ideas to periodic-quasiperiodic systems is included and demonstrated by means of an example.
منابع مشابه
An efficient analytical solution for nonlinear vibrations of a parametrically excited beam
An efficient and accurate analytical solution is provided using the homotopy-Pade technique for the nonlinear vibration of parametrically excited cantilever beams. The model is based on the Euler-Bernoulli assumption and includes third order nonlinear terms arisen from the inertial and curvature nonlinearities. The Galerkin’s method is used to convert the equation of motion to a nonlinear ordin...
متن کاملOrder Reduction of Parametrically Excited Linear and Nonlinear Structural Systems
Order reduction of parametrically excited linear and nonlinear structural systems represented by a set of second order equations is considered. First, the system is converted into a second order system with time invariant linear system matrices and (for nonlinear systems) periodically modulated nonlinearities via the Lyapunov-Floquet transformation. Then a master-slave separation of degrees of ...
متن کاملA New Numerical Technique for the Analysis of Parametrically Excited Nonlinear Systems
A new computational scheme using Chebyshev polynomials is proposed for the numerical solution of parametrically excited nonlinear systems. The state vector and the periodic coefficients are expanded in Chebyshev polynomials and an integral equation suitable for a Picard-type iteration is formulated. A Chebyshev collocation is applied to the integral with the nonlinearities reducing the problem ...
متن کاملStability Analysis in Parametrically Excited Electrostatic Torsional Micro-actuators
This paper addresses the static and dynamic stabilities of a parametrically excited torsional micro-actuator. The system is composed of a rectangular micro-mirror symmetrically suspended between two electrodes and acted upon by a steady (dc ) while simultaneously superimposed to an (ac ) voltage. First, the stability of the system subjected to a quasi-statically applied (dc ) voltage is investi...
متن کاملDynamical SyStemS with PerioDic coefficientS: analySiS anD control
A general framework for the analysis and control of parametrically excited linear/nonlinear dynamical systems is presented. This class of problems appears in the modeling of rotorcraft blades in forward flight, asymmetric rotor-bearing systems, automotive components such as connecting rods, universal joints, asymmetric satellites, fluids under gravity modulations, etc. These dynamical systems a...
متن کامل